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Dispersion  in  a commercial  polymeric  monolith  was  simulated  on  a sample  geometry  obtained  by  direct
imaging  using  high-resolution  electron  microscopy.  A parallelized  random  walk  algorithm,  implemented
using  a velocity  field  obtained  previously  by  the  lattice-Boltzmann  method,  was  used to model  mass
transfer.  Both  point  particles  and  probes  of  finite  size  were  studied.  Dispersion  simulations  with  point
particles  using  periodic  boundaries  resulted  in  plate  heights  that  varied  almost  linearly  with  flow  rate,
at  odds  with  the  weaker  dependence  suggested  by experimental  observations  and  predicted  by theory.
This discrepancy  resulted  from  the  combined  effect  of the  artificial  symmetry  in the velocity  field  and
the  periodic  boundaries  implemented  to  emulate  macroscopic  column  lengths.  Eliminating  periodicity
and simulating  a  single  block  length  instead  resulted  in  a functional  dependence  of  plate  heights  on
flow  rate  more  in accord  with  experimental  trends  and  theoretical  predictions  for  random  media.  The
lower  values  of  the  simulated  plate  heights  than  experimental  ones  are  attributed  in part  to the presence
of  walls  in  real  systems,  an  effect  not  modeled  by the  algorithm.  On  the  other  hand,  analysis  of tran-
sient  dispersion  coefficients  and  comparison  of  lateral  particle  positions  at the  entry  and  exit  hinted  at
non-asymptotic  behavior  and  a strong  degree  of correlation  that was  presumably  a  consequence  of  pref-

erential high-velocity  pathways  in  the  raw  sample  block.  Simulations  with  finite-sized  probes  resulted
in particle  trajectories  that  frequently  terminated  at narrow  constrictions  of  the  geometry.  The  amount
of entrapment  was  predicted  to  increase  monotonically  with  flow  rate, evidently  due  to  the  relative  con-
tributions  to  transport  by convection  that  carries  particles  to  choke-points  and  diffusion  that  dislodges
these  entrapped  particles.  The  overall  effect  is very  similar  to a  flow-dependent  entrapment  phenomenon
previously  observed  experimentally  for adenovirus.
. Introduction

Chromatographic monoliths are contiguous blocks of solid with
 macroporous network permitting bulk flow of liquids, which pro-
otes convective transport throughout the geometry. The flow and
ass transfer characteristics of these media have been character-

zed extensively by experiment, through application of analytical
ools and concepts developed for packed particle beds. For instance,
eak-broadening behavior is often expressed in terms of the plate
eight equation attributed to van Deemter [1]:
 = B

Pe
+ A + C · Pe (1)

∗ Corresponding author. Tel.: +1 302 831 8989; fax: +1 302 831 1048.
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© 2012 Elsevier B.V. All rights reserved.

Here h is the reduced plate height, expressed as a function of the
reduced velocity or Péclet number given by

Pe = uavg
z · de

Dm
(2)

where uavg
z is the average axial velocity, de the equivalent particle

diameter and Dm the molecular diffusivity of the solute. The con-
stants A, B and C in Eq. (1) are parameters that characterize the
strengths of the individual contributions to axial dispersion due
to convective effects, molecular diffusion and solute transport and
adsorption at the particle interface and within particles. Experi-
mentally obtained reduced HETP (h) curves in both polymeric [2–6]
and silica [7–9] monoliths suggest that the role of interphase mass
transfer (the C term) is diminished and the contribution of mechan-
ical dispersion (the A term) to the overall plate height is higher,
compared to the case for packed beds.
Eq. (1) and extensions such as the Knox equation [10] are use-
ful for basic evaluation of performance, for example when used
for comparisons among different types of monoliths or different
solutes [11,12],  but its predictive power remains limited since A, B
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nd C are essentially treated as fitting parameters. More detailed
icroscopic models based on the underlying convective, mass

ransfer and adsorption phenomena are available and frequently
sed, such as the coupling model of Giddings [13], which identifies
everal length scales of interaction among the dispersion sources.
owever, these are also based on assumptions about the geome-

ry and the corresponding flow field and involve several additional
arameters, the values of which must be assumed or obtained
xperimentally.

More rigorous approaches start from the complete set of trans-
ort equations, incorporating varying degrees of detail. Analytical
olutions of the complete transport equations, such as those of
he general rate model, remain intractable and numerical solutions
ntroduce complexities of their own such as numerical dispersion
14,15]. Therefore, simplifications are often made, for example by
tilizing lumped parameters such as a constant axial dispersion
oefficient that has to be determined by experiment [16,17],  assum-
ng radial homogeneity, and simplifying the transport equations
y ignoring effects of certain physical phenomena based on their
xpected contribution to the band profiles.

A complete interpretation of observed transport and adsorption
henomena thus requires consideration of the fundamental under-

ying microscopic mechanisms [12,18],  which are intimately linked
o the interaction of flow and dispersion with the explicit geom-
try under consideration [13,19,20].  In complex geometries such
s those of monoliths, the motivation to start from the detailed
icrostructure arises not only from the need to reproduce the cor-

ect functional dependence among macroscopic variables but also
ecause certain medium-specific phenomena appear to be affected
y the geometry itself. For example, results of virus pulse injections

n polymeric monoliths exhibit a decrease of exit peak area with
ncreasing flow rate, in what is apparently a reversible mechani-
al entrapment of the solute in the stationary-phase structure [21].
he proposed explanation for this phenomenon hinges upon the
ature of the steric interaction of virus particles with the narrow
ores of the monolith, an effect that can be assessed and predicted
nly by a pore-scale view of transport.

Advances in imaging methods and the capabilities of compu-
ational hardware and software have enabled detailed analyses
mploying explicit pore-scale representations of complex geome-
ries. Simulation methods based on such direct structural
nformation are now well established, and have been used success-
ully to model flow and dispersion in diverse geometries such as
ractal constructs [22], sphere packs [23–36],  internal networks of
orous particles [37] and more recently a silica monolith [20,38].

n a previous article [39], we presented results for the simulation
f flow in a three-dimensional reconstruction of a sample block
Fig. 1) of a commercially available polymeric monolith disk, the
IMTM disk from BIA Separations, using the lattice-Boltzmann (LB)
ethodology. In this work, the findings of the flow simulation are

tilized to model dispersion in the same structure, for point and
nite-sized solute particles.

A Lagrangian particle tracking method, more generally referred
o as a random walk algorithm, is used for simulation of mass
ransfer, whereby individual trajectories of a large number of
articles are utilized to simulate bulk dispersion. This class of
ethods is based on the mathematical theory of Brownian motion

stablished by Einstein [40] and Langevin [41], and has been widely
pplied to the more general problem of solving the convection-
iffusion equation [22–32,34,35,39–42].  The random walk method
voids the problems of numerical dispersion and stability suffered
y finite-element and finite-difference methods at high Péclet

umbers [24], and provides an intuitive particle-based model of
ransport that can be implemented on top of an existing flow

odel [42]. The algorithm as used in this study does have its
imitations: particle–particle interactions are ignored, the flow
Fig. 1. A rendering of the reconstructed monolith structure, with the length (L) and
width (W) dimensions indicated. Black is solid.

field is uncoupled from particle motion (in that the particles cannot
alter the velocity field) and it may  be difficult to implement bulk
concentration-dependent phenomena such as chemical reactions.
However, for simulations involving dilute pulse injections of
unretained solutes, as is the case for this study, these constraints
are not as relevant.

2. Materials and methods

2.1. Sample geometry and flow

The preparation, serial-section imaging and image processing
of the sample were described in the previous article [39]. The ‘raw’
block of Fig. 1 obtained thus had dimensions 962 × 962 × 756 voxels
(17.8 �m × 17.8 �m × 14.1 �m in x, y and z respectively). As in the
modeling of flow, the geometry used for the dispersion simulations
was obtained by ‘mirroring’ this raw-block in all three dimen-
sions in order to achieve edge-to-edge continuity of the structure,
resulting in a final sample geometry of 1922 × 1922 × 1510 voxels
(35.6 �m × 35.6 �m × 28.2 �m).

The calculation of the velocity distribution within the recon-
structed monolith has also been described in detail previously [39].
For the base case of the LB simulations, flow within the mirrored
block was  modeled for a preset pressure drop of 15.9 kPa along the
axial direction. The mobile phase was assumed to be water with
a kinematic viscosity (�) of 10−6 m2/s. Within the calculated flow
field, the local Reynolds number (Rei = (de·ui)/�, for pore velocity
ui with an equivalent particle diameter, de, of 1.9 �m)  at even the
highest pore velocities remains below 0.025, hence creeping flow
can be assumed, allowing the detailed velocity distribution at other
imposed pressure drops to be obtained simply by linear scaling.

2.2. Random walk simulations

The discretized form of the generalized stochastic differential
equation for the motion of a single particle [43,44] is the basis for
the random walk simulation of dispersion. Solving this equation
for a large number of particles amounts to solving the probabilistic
Fokker–Planck equation of an ensemble [43,44],  which in turn is
analogous to obtaining the solution for the convection-diffusion
equation [42,45,46].  The temporal variation of particle coordinates

can be expressed by:

rn+1 = rn + u(x, y, z) · �t  +
√

2Dm · ��1 (3)
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Fig. 2. A two-dimensional portion of a section of the sample geometry eroded by
a  spherical probe with a diameter of 5 voxels, a cross-section of which is shown
to scale above the top left corner of the image. The black regions indicate the pre-
erosion solid geometry while the white outline represents the pore geometry that
H. Koku et al. / J. Chrom

here r is the particle coordinate vector, u the local velocity vector
s defined by the flow field, Dm the molecular diffusion coefficient
f the simulated particles and ��1 a random normal deviate. In this
ormulation, the displacement of a particle at each step reflects the
um of individual convective and diffusive contributions.

In the specific implementation of the random-walk algorithm
mployed in this work, local velocity values were obtained by a
rst-order trilinear interpolation of the scaled LB flow field values.
o avoid overshoot errors [46], the fixed time step �t  was chosen
ufficiently small so that at the largest local velocity of the highest
ow rate, a particle cannot traverse more than a fraction of one
oxel in a single step, in analogy with the Courant–Friedrichs–Lewy
riterion [47]. To simulate macroscopic column lengths, periodic
oundary conditions were employed in three dimensions, meaning
hat particles that exit from either side of the block are reintroduced
rom the corresponding opposite face. Collisions with solid walls
ere handled using simple bounce-back [48].

Because of the considerable size (about 166 GB) of the geome-
ry and velocity information that had to be loaded into memory for
ast and efficient processing of data, a parallel implementation was
sed. The parallelization of the random walk algorithm of this study
losely follows that of Schure et al. [28]. The parallel code was  writ-
en in Fortran 90, compiled using the Portland Group Inc. Fortran
ompiler and run on a Redhat Linux cluster of 16 quad-core Dell
610 computers equipped with 3.0 GHz Intel Xeon processors and
.0 GB of RAM per processor. The computers were interconnected
ith 10-Gigabit Ethernet switches and inter-processor communi-

ation was implemented by the message passing interface (MPI)
rotocol [49] routines.

As a fixed column length (Lc) was simulated in all runs, the wall
ime varied inversely with the simulated average velocity. For the
ighest velocity setting (uavg

z = 0.0195 m/s) the average wall time
as 4.5 h for a single run with 5000 particles and a time step of

0−8 s.

.3. Plate heights and axial dispersion coefficients

At the end of each run, the simulated elution curve was obtained
s an exit time distribution histogram compiled from individual
lution times of the particles. The average retention time and the
late heights were calculated from the first and second moments
f the exit time distribution. The average retention time is given as:

R = 1
N

N∑

i=1

ti (4)

here N is the number of particles and ti are the particle exit times.
he (reduced) plate heights are calculated by:

 = Lc

de · t2
R

1
N

N∑

i=1

(ti − tR)2 (5)

he related axial dispersion coefficient Dax and its normalized value
∗
ax are then obtained from h using:

∗
ax = Dax

Dm
= h  · Pe

2
(6)

.4. Emulation of probes of finite size

To represent the interaction of probes of finite size with the
onolith, the geometry was transformed to simulate the dimin-
shed pore volume accessible to the center of mass of a probe with
 finite size, as opposed to the full pore space that can be sampled
y a point probe. This was implemented by eroding the pore vol-
me  with a structuring element equivalent to the probe of finite
has  been transformed into solid after erosion. The remaining pore space after erosion
is  shown as dark gray.

size [50–52].  An example application is presented in Fig. 2, which
shows a two-dimensional cross-section of a monolith sample that
has been eroded by a three-dimensional spherical probe with a
diameter of 5 voxels. The white regions indicate the portions of
the pore space that have been eroded from the raw geometry,
i.e., transformed into solid, illustrating the slightly diminished vol-
ume  accessible to the finite-sized probe. The velocity distribution
remains unchanged regardless of the size and shape of the probe,
consistent with the aforementioned assumption of the flow field
being uncoupled from mass transfer.

The erosion procedure can require considerable computing time
depending on the size of the probe, and a new geometry has to be
generated for every unique probe size and shape, but the benefit is
a simpler code structure and the (generally) increased speed of the
simulations due to the avoidance of a computationally expensive
collision detection algorithm invoked at each step.

3. Results and discussion

3.1. Dispersion of point particles at macroscopic column length
scales

Prior to the simulation of mass transfer in the monolith sam-
ple, the random walk code was  validated using simpler systems for
which analytical solutions of both the velocity field and the disper-
sion coefficients were available [53,54]. The computed results for
asymptotic dispersion in Poiseuille flow in cylindrical tubes, square
ducts and infinite parallel plates showed excellent agreement with

the analytical solutions.

For simulations in the monolith sample, a generic point parti-
cle with a molecular diffusivity of 1.0 × 10−10 m2/s was  assumed,
as an approximation of small to medium molecular weight
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Table 1
The range of flow rates simulated for the point particle runs.

uavg
z (m/s) Rea Peb

Minimum 9.75 × 10−6 1.85 × 10−5 0.185
Maximum 1.95 × 10−2 3.71 × 10−2 371
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a Re = (de · uavg
z )/�, with de = 1.9 �m and � = 10−6 m2/s. uavg

z is the average axial
ore velocity.
b Eq. (2) with de = 1.9 �m and Dm = 10−10 m2/s.

roteins such as lysozyme (Dm = 1.1 × 10−10 m2/s [55]) and oval-
umin (Dm = 0.8 × 10−10 m2/s [56]). The range of the flow rates and
he corresponding Re and Pe values are displayed in Table 1. This
ange was chosen to include the flow rates used in the experimen-
al work of Trilisky et al. [21,57] using the same monolith. However,
he highest flow rate (uavg

z = 0.0195 m/s) is outside the recom-
ended operating conditions of the CIM disk, and was  included as

 hypothetical case to investigate the model behavior at extreme
onditions.

The trajectories of 5000 point particles in a column length
.005 m were simulated for each run. The default time step was
0−8 s, although a larger value of 10−7 s was used for flow rates
orresponding to Pe values smaller than 0.37. For all velocities, the
verage retention time calculated by Eq. (4) deviated from the value
ased on the column length and average velocity by less than 1.0%.

The reduced plate heights for column simulations using two dif-
erent time steps of 10−8 and 10−7 s were calculated using Eq. (5),
nd are displayed in Fig. 3. Reduced HETP data for an additional
imulation set, designated as the ‘single-block’ data, are also plotted
nd discussed in Section 3.2. For all simulation sets, curve fits of the
ata (dashed and continuous curves) were obtained using a variant
f the Knox equation, where the linear term in Pe,  identical to the
-term in the van Deemter equation (Eq. (1)), was removed, i.e.:

 = B

Pe
+ A · Pen (7)

n the original formulation of Knox [10], the exponent n was set at
.33, but we treat it as an adjustable parameter here.

The data points for the two simulation sets employing the differ-
nt time steps show that the algorithm is largely insensitive to �t

or the values tested. The most noticeable difference is at the high-
st flow rate, presumably because the highest values of the velocity
eld for the larger �t  of 10−7 s are expected to result in Courant

ig. 3. The plate height curves for point-sized probe column simulations with two
ifferent time steps, �t  = 10−8 s (�) and �t  = 10−7 s (©); the single-block simulation
et (�); the modified Knox fits to the simulation data (the dashed and continuous
ines), and the experimental results (�) of Trilisky et al. for ovalbumin [55].
. A 1237 (2012) 55– 63

numbers slightly higher than one, likely giving rise to overshoot
errors.

The topmost data set in Fig. 3 displays experimentally obtained
results for h [58] for ovalbumin in the CIM monolith. These data
were recomputed from the original so that all plate heights and Pe
numbers were based on the value of equivalent diameter obtained
in the current study. Compared to the experimental data, it is
obvious that the particle simulations do not capture the physical
dispersion behavior. Part of the discrepancy can be ascribed to flow
non-idealities that are not accounted for in the model, such as the
wall effects that are discussed later, but the bigger cause for con-
cern is the appreciable difference in the functional trends between
the simulated and experimental data.

Characterizing the dependence of the plate height on Pe is a use-
ful first step in resolving the underlying reasons for this difference.
The modified Knox relation of Eq. (7) yields the fit values of A = 1.43,
B = 1.36 and n = 0.667, and captures the trends of the simulation data
well over the entire range (Fig. 3, dashed line). While the low end
of the Pe range follows the molecular diffusion-dominated form as
expected, the magnitude of n is surprisingly large, suggesting that
axial dispersion scales with Pe1.67 (per Eq. (6))  at high flow rates.
This approaches the theoretically predicted value of 2 for flow fields
where (lateral) mechanical dispersion is absent and velocity biases
among streamlines are eliminated by diffusive motion alone, such
as for flow in ordered arrays or for Taylor-like dispersion in ducts
and tubes [35,59,60].  As the experimental h values in Fig. 3 sug-
gest, however, monolithic media are expected to show behavior
more akin to random media, where lateral dispersion scales with
the flow rate and contributes to the elimination of velocity bias.
This in turn leads to a much weaker dependence of the axial dis-
persion coefficient, Dax, on flow rate, estimated to vary as Pe1.0 to
Pe·ln(Pe),  with the latter often approximated by Pe1.2 [61–63].

Analysis of particle trajectories, and the local velocity field that
forms the deterministic part of the motion, point to the ultimate
cause of this unexpectedly strong coupling to Pe.  As can be clearly
observed for the example depicted in Fig. 4a, particle trajectories
at high flow rates exhibit a distinct spiral pattern, with the lateral
directions reversed periodically. Inspection of lateral components
of the flow field indicates that this behavior is caused directly by the
velocity field. Fig. 4b displays the local x-velocities for two sections
of the mirrored sample block: section 250, above the mid-section
of the geometry (756 voxels or 14.1 �m)  and section 1250, which
is below. A reversal of the lateral directions between these sections
is evident, the exact location of which is found to be at the half
and full mirrored-block lengths. Correspondingly, for simulation of
macroscopic lengths with periodic boundaries, the lateral spread of
the particles is artificially constrained by the block length, leading
to the high scaling of the axial dispersion with flow rate due to an
insufficient contribution of lateral dispersion to eliminate velocity
biases as mentioned above. It can be noted in each plate of Fig. 4b
that the local velocities change sign across the centerline of each
section as well, that is, an ‘anti-symmetry’ can be identified along
the width of the block.

While the exact reasons for this artificial symmetry are not clear,
it can be surmised that the inherent symmetry of the mirrored
geometry employed for the flow simulations is the basis for the
artifact. An additional complication is that this symmetrical flow
distribution is used in conjunction with periodic boundaries, which
have previously been reported to cause a spurious contribution to
dispersion [24,64] in simulations of random sphere packs. Although
a similar contribution could be anticipated for the geometry in this
study as well, considering the fact that a particle is exposed to the
symmetry immediately and throughout the block length, whereas
the effects of periodicity are only ‘felt’ at the block borders, it can

be suggested that the constraint of lateral motion via the former
effect is the dominant factor in the observed discrepancy.
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Fig. 4. (a) An example trajectory of a particle at Pe = 3710, displaying the x and z
coordinates in voxels. (b) Local x-velocity values at section 250 (top, black dashes
i
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t
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ndicate centerline) and section 1250 (bottom). Color map  scale of velocities is iden-
ical  for both plates. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

.2. Dispersion of point particles in a single raw block

To avoid the reversal of lateral particle trajectories at every half-
lock length of the mirrored structure, an alternative approach was

sed where the particles were started at the entry section of the
aw block of Fig. 1 and allowed to stream until reaching its final
ection, i.e., 756 voxels only, rather than using the full mirrored
lock with periodic boundaries in order to simulate a macroscopic
Fig. 5. Reduced plate heights as a function of fractional raw-block length
(L  = 14.1 �m).

column length. In the following discussion, these are referred to as
‘single-block simulations’ to differentiate them from the ‘column’
simulations of the previous section.

The plate height curve obtained for these simulations (Fig. 3,
continuous curve) indicates that single-block simulation h values
are considerably lower than those for the column simulations at
mid  to high range of the flow rates, and follow a slope more similar
to that of the experimental data points. A fit of Eq. (7) this time gives
a lower Pe exponent of 0.20, which is essentially the same as the the-
oretical prediction for random media without liquid holdup [61]. A
similarly weak dependence on Pe has been observed in simulations
of silica monoliths as well [38].

The discrepancy between the single-block simulation results
and the experimental data of Fig. 3 may  be attributed at least in
part simply to the absence of wall effects as mentioned previously.
In packed beds, for example, it is known that the packing order
close to the wall and the radial stress exerted by the bed on the
wall promote a comparatively distorted flow field and increased
local plate heights [65–68].  Wall effects have also been observed in
silica monoliths [38,69].  The reduced local separation efficiency in
the monoliths is attributed to the structural difference between the
wall and the core regions caused by the shrinkage of the monolithic
rod during the manufacturing process [69], presumably leading to
the formation of the large pores observed at the interface of the
monolith material and the cladding [38].

Based on NMR  measurements and simulations in packed beds,
Scheven et al. proposed that the overall effective dispersion can
be expressed as the sum of an intrinsic dispersivity characterizing
the homogeneous bulk pore volume and a term to account for flow
heterogeneities due to sample morphology, including wall effects
[70]. They suggested that for a set flow rate, both of these terms are
constant in the asymptotic limit and therefore the overall effective
dispersivity exceeds the intrinsic by a fixed amount, which seems
consistent with the results in Fig. 3 for the experimental values and
the simulation results for the single block. On the other hand, it
is important to assess whether the latter correspond to long-time,
stable, i.e. asymptotic, dispersion behavior. This was  done by sim-
ulating lengths smaller than the raw block to obtain plate heights
as a function of the fractional block-length. The resultant h curves

are displayed in Fig. 5 for several flow rates.

Although the trends in this plot suggest that the dispersion val-
ues are converging, it is difficult to confirm that the final values
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Fig. 6. Plot of scaled u (total velocity) values in the central region of the sample block. Inset displays the topmost x–y cross-section of this region as the shaded area on
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centers of the larger particles due to their larger diameters [73],
resulting in trajectories that do not sample the lower velocities
near these wall regions, and consequently faster trajectories for the
he  first section of the sample block for perspective. The values are coded by a com
t  their highest, a translucent mixture of green and blue at mid-range, and compl
nterpretation of the references to color in this figure legend, the reader is referred 

t the raw-block length (i.e., corresponding to fractional length 1.0
n the plot) are indeed asymptotic, especially considering the sig-
ificant scatter at the higher flow rates. A factor that considerably

nfluences the transient evolution of the axial dispersion, warrant-
ng further investigation, is the presence of high-velocity pathways

ithin the simulated flow field of the sample block. This key fea-
ure of the velocity distribution is illustrated in Fig. 6, which plots
he local velocity values in the core of the sample block. The high
elocities, depicted as bright green, cluster to form channels like
he torus-shaped region in the figure. Theoretical analyses indicate
hat such preferential pathways control the dispersion behavior, as
he characteristic length scales are defined by the average distance
equired by solute particles to sample these paths [26,30].

A qualitative sense of whether these high-velocity pathways do
ndeed influence particle trajectories can be obtained by the inspec-
ion of the initial and final lateral (x–y) positions of the particles,
ith respect to how fast they exit from the geometry. If there are

ndeed preferential pathways suggestive of channeling, the exit lat-
ral positions of the particles should be correlated to their initial
ateral positions. This analysis was carried out by sorting the exit
imes of the particles and selecting the top and bottom 10% of the
otal ensemble. The initial and final coordinates of these particles
re plotted in Fig. 7.

It is apparent that both the initial and the final positions of the
fast’ particles (top graph) are heavily clustered. The slowest par-
icles do not display as obvious a pattern, however, and are more
xtensively scattered throughout the entry and exit sections. This
eans that for the faster trajectories, exit times are strongly cor-

elated with the initial positions; in other words, the preferential
athways or ‘channels’ within the 3D geometry have a significant

mpact on the overall dispersion. High-velocity channels like those
n Fig. 6 could of course be present in a physical monolith, but are
nlikely on the scale of its entire geometry, which seems to be the
ase for the 3D sample in this work.

.3. Dispersion of finite-sized particles

A probe with a diameter of 92.5 nm and a diffusivity of
0−11 m2/s was used for the finite-size particle simulations,
hich approximately model the dispersion of adenovirus 5 (Ad5)

ith an equivalent diameter of 120 nm and a diffusivity of

.37 × 10−11 m2/s [71,72].  The reconstructed monolith geometry
as accordingly eroded by a 3D sphere of 5 voxels in diameter

o emulate the pore space accessible to the probe, resulting in a
 gradient of color and transparency, with the velocities displayed as opaque green
transparent, therefore invisible at solid voxels where the total vector is zero. (For

 web version of this article.)

decreased total apparent porosity of 0.507 compared to 0.570 for
the raw structure. A macroscopic column length of 3 mm  was  sim-
ulated, with other parameters and the range of velocities simulated
remaining the same as those used for the point particles summa-
rized in Table 1.

The first moments obtained from particle exit time distribu-
tions were about 10% lower than the expected values based on
the column length and uavg

z . As mentioned, this discrepancy was
less than 1% for point particles, which means that the larger probes
travel faster. This is due to inaccessibility of the solid walls to the
Fig. 7. Initial (©) and final (�) coordinates in pixel units of the fastest (top graph)
and slowest (bottom) 500 particles forming a simulated peak of 5000 particles for a
single-block run. Pe = 371.
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Fig. 9. Normalized global coordinates as a function of time for an entrapped particle.
The lateral coordinates are normalized by the block width W,  whereas the axial
coordinate is normalized by the simulated column length, Lc .  The final normalized
coordinates at timeout are 1.98, 0.465 and 0.543 for x, y and z respectively.

Fig. 10. Example trajectories (open circles) within the flow field (red cones) for a
single particle released in the immediate vicinity of the stagnation coordinates of
Fig. 9. The filled green circle outlined in black indicates the starting coordinates of
ig. 8. The histogram of elution times for finite-sized particles at the highest flow
ate (Pe = 3710). The peak between 1.00 and 1.02 corresponds to the particles that
id  not elute within the allocated timeout period.

articles. The expected proportional change in average velocity due
o the decrease of accessible pore volume can be calculated from
he lower apparent porosity. For the porosity values noted above,
he expected difference in retention times is calculated as 11%, close
o the value observed from the simulations.

The plate heights for the column simulations are obviously
ubject to the symmetry issue of the flow field as well, and conse-
uently were found to exhibit a trend similar to that for the point
article data. A fit of the modified Knox relation (Eq. (7)) yielded

 value of 0.72 for the exponent n, marginally higher than that
btained for the point particles. However, a more specific and dis-
inct reason for studying probe particles of finite size is the apparent
ntrapment of particles within the geometry. At the beginning of
ach run in the random-walk algorithm, a timeout period based
n the slowest percentile of the axial velocity distribution is des-
gnated; if a particle does not elute before this time point, it is
ssumed to be ‘stuck’. Except for rare cases in which a particle was
nitially positioned at a dead-end pore by the random placement
lgorithm, all point particles were seen to elute from the simulated
olumn length significantly before the end of this specified timeout
eriod. For finite particle size simulations, on the other hand, a sig-
ificant portion did not elute within this time frame, especially at
he higher velocities. Fig. 8 depicts the simulated elution profile at
he highest Pe number, where the particles that do not exit before
he allocated time form the peak at 1.00 s, the preset timeout value
or that flow rate.

A trace of the global position as a function of time for a
timed-out’ particle is given in Fig. 9, where it can be seen that
he coordinates gradually converge to a single point approxi-

ately halfway through the simulated column length and remain
nchanged for the rest of the simulation. All other trapped parti-
les examined were seen to exhibit similar behavior, confirming
hat the timeouts correspond to the termination of the trajectories.

The particular final location of Fig. 9 was investigated further by
solating the geometry and the flow field of that region and running
artial simulations for the finite-sized probe, by releasing particles
umerous times at a point slightly upstream of the entrapment
oint. Fig. 10 displays two examples of these runs, with the open
ircles representing the individual trajectory steps for the particle,

nd the red cones indicating the magnitude and direction of local
elocities. Fig. 10a  is for the highest flow rate (Pe = 3710), where it
an be seen that once the particle is released (at the position marked
y the filled circle) it follows the local flow field, reaching the trap

the  particle. (a) High flow rate, Pe = 3710. (b) Low flow rate (Pe = 371); black arrow
indicates the final trajectory point visible in this perspective. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of  this article.)
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Fig. 11. Comparison of the entrapment behavior predicted by simulations (©) with
the  experimental results (�) [21]. The simulation results are the number fraction
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f  particles that do not elute within the specified timeout period, while the experi-
ental data are the fraction of the solute mass trapped within the column.

egion corresponding to the asymptotic coordinates of Fig. 9, and
emaining in the immediate vicinity for the rest of the simulation.
he trap region itself is a narrow constriction through which appre-
iable flow occurs, yet it is small enough to prevent the passage of
he modeled probe.

The trajectory in Fig. 10b, on the other hand, was obtained for
 slower flow rate (Pe = 371), and illustrates a much more inter-
sting outcome. When the particle is released in this case, even
hough it is carried to the choke-point by the flow field, the stochas-
ic component of the overall motion formed by the diffusive steps
s sufficiently effective to allow the particle to probe the entire void
pace available, as indicated by the diffusion cloud formed by the
ultitude of points of the trajectory. This relative increase in mobil-

ty enables the particle to eventually leave the stagnation point, in
he particular case of Fig. 10b by backtracking to its point of entry
nd switching to a more favorable path.

A previous experimental study [21] using Ad5 particles in the
IM monoliths yielded results similar to the entrapment phe-
omenon described above. Specifically, pulse injections of Ad5
nto a stack of 4 CIM monolith disks under non-retentive condi-
ions were observed consistently to result in elution peaks with
reas smaller than would be expected from the total injected mass.
he decrease in the peak area varied directly with the flow rate
mployed, and furthermore the ‘missing’ mass of particles was
ecovered from the column when the flow rate was decreased to a
ow value. The authors explained this phenomenon by a flow-based,
onvective entrapment mechanism, where large particles that are
orced by the flow field into constrictions narrower than the particle
iameter remain trapped unless a series of random diffusive moves
arry them to alternative open paths. At high velocities, where
onvective contributions to transport are dominant, diffusion is
nadequate to overcome the velocity bias and particles remain at
heir positions of entrapment. At lower velocities, however, when
onvection and diffusion are of comparable magnitude, the latter
s sufficient to dislocate the particle onto a favorable trajectory.
he behavior indicated by the case studies of Fig. 10 closely resem-
les the qualitative characterization of the entrapment mechanism,
roviding support for this hypothesis within the framework of the
odel employed.
A comparison between the simulated and experimental cases
f entrapment is made (Fig. 11)  by plotting the number fraction
f entrapped particles in the simulations along with the fraction
f peak area that is ‘lost’ relative to the expected area from mass
. A 1237 (2012) 55– 63

balance observed in the pulse experiments. Although the simu-
lations anticipate the existence of the entrapment phenomenon
and predict correctly that it will increase with flow rate due to
the diminishing contribution of diffusion, it is evident that the
extent of entrapment is underpredicted by a large margin. Pos-
sible reasons for these lower estimates are the use of a smaller
particle diameter and a higher value of the diffusion coefficient
(10−11 m2/s in the simulations vs. 0.37 × 10−11 m2/s for Ad5) and
the fact that the experimental results were obtained for a stack of 4
CIM disks, whereas the simulated length was  for a single monolith
disk, leading to a decreased frequency of entrapment. The artificial
restriction of the lateral dispersion discussed in Section 3.2 is also
expected to contribute to this difference, by limiting the sampling
frequency of the choke-points by the particles. However, the fact
that this phenomenon arises in the simulations without any model
adjustments is encouraging, and indicates that key aspects of the
microscopic transport mechanisms are correctly captured by the
rigorous random-walk solution.

4. Conclusions

This work illustrates the feasibility of direct image-based
approaches for chromatographic modeling in that it provides
examples for the high-resolution capture of a microstructure,
its characterization by image processing methods and the appli-
cation of mesoscopic models for the simulation of transport. A
particular advantage is that the image-based approach allows an
explicit description of the geometry, enabling a much more rigor-
ous analysis of solute-stationary phase interaction. However, the
results also highlight one of the key challenges associated with this
approach, which is the question of how representative a sample is
of the macroscopic structure in order to obtain transient disper-
sion characteristics consistent with the physical system. Provided
that this criterion is met, the methodology developed is sufficiently
robust and flexible to accommodate these alternatives, and remains
promising for future applications.

Achieving predictive modeling of dispersion behavior requires
overcoming several additional challenges that this work reveals.
In addition to the absence of wall effects two separate issues are
believed to contribute to the discrepancies between the dispersion
simulations of this work and macroscopic measurements, namely
the artificial restriction of lateral motion by the periodic reversal
of the lateral velocity components and the channeling effects that
dominate dispersion within a single block length. Both of these
issues may  potentially be addressed by the use of a larger sample,
which could allow the simulation of dispersion without resorting
to periodic boundaries, at the same time averaging out the anoma-
lies introduced by the local features that are further emphasized by
the mirroring procedure. The difficulty, however, is to determine a
priori whether such an alternative sample will be satisfactory itself.
Reliable metrics that provide guidance in assessing the overall util-
ity of a sample as a ‘typical’ element of the global geometry should
be used for this purpose and could be addressed by future research.
One option previously demonstrated for various random media
is to characterize the sample geometry using statistical correla-
tions, and to use them to estimate macroscopic transport properties
[74–77]. These estimates can then be compared with experimen-
tally obtained bulk values to decide whether the sample can be
considered to be representative of the whole.
Financial support for this work was provided by the National
Institutes of Health (NIH) under grant R01 GM75047.
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