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using a velocity field obtained previously by the lattice-Boltzmann method, was used to model mass
transfer. Both point particles and probes of finite size were studied. Dispersion simulations with point
particles using periodic boundaries resulted in plate heights that varied almost linearly with flow rate,
at odds with the weaker dependence suggested by experimental observations and predicted by theory.

f\(ﬂeg :g;lrgf This discrepancy resulted from the combined effect of the artificial symmetry in the velocity field and
CIM disk the periodic boundaries implemented to emulate macroscopic column lengths. Eliminating periodicity
Dispersion and simulating a single block length instead resulted in a functional dependence of plate heights on
Random walk flow rate more in accord with experimental trends and theoretical predictions for random media. The
Image-based simulation lower values of the simulated plate heights than experimental ones are attributed in part to the presence
Entrapment of walls in real systems, an effect not modeled by the algorithm. On the other hand, analysis of tran-
sient dispersion coefficients and comparison of lateral particle positions at the entry and exit hinted at
non-asymptotic behavior and a strong degree of correlation that was presumably a consequence of pref-
erential high-velocity pathways in the raw sample block. Simulations with finite-sized probes resulted
in particle trajectories that frequently terminated at narrow constrictions of the geometry. The amount
of entrapment was predicted to increase monotonically with flow rate, evidently due to the relative con-
tributions to transport by convection that carries particles to choke-points and diffusion that dislodges
these entrapped particles. The overall effect is very similar to a flow-dependent entrapment phenomenon
previously observed experimentally for adenovirus.
© 2012 Elsevier B.V. All rights reserved.
1. Introduction Here h is the reduced plate height, expressed as a function of the
reduced velocity or Péclet number given by
Chromatographic monoliths are contiguous blocks of solid with ave
a macroporous network permitting bulk flow of liquids, which pro- Pe — Uz~ -de (2)
motes convective transport throughout the geometry. The flow and Dm

mass transfer characteristics of these media have been character-

ized extensively by experiment, through application of analytical  giameter and D,, the molecular diffusivity of the solute. The con-
tools and concgpts devellope.d for packed partlc.le beds. For instance, stants A, B and C in Eq. (1) are parameters that characterize the
peak-broadening behavior is often expressed in terms of the plate  giranoths of the individual contributions to axial dispersion due
height equation attributed to van Deemter [1]: to convective effects, molecular diffusion and solute transport and
adsorption at the particle interface and within particles. Experi-
mentally obtained reduced HETP (h) curves in both polymeric [2-6]
B and silica [7-9] monoliths suggest that the role of interphase mass
h= Pe +A+C-Pe () transfer (the Cterm) is diminished and the contribution of mechan-
ical dispersion (the A term) to the overall plate height is higher,

compared to the case for packed beds.
Eq. (1) and extensions such as the Knox equation [10] are use-
ful for basic evaluation of performance, for example when used
* Corresponding author. Tel.: +1 302 831 8989; fax: +1 302 831 1048. for comparisons among different types of monoliths or different
E-mail address: lenhoff@udel.edu (A.M. Lenhoff). solutes [11,12], but its predictive power remains limited since A, B

where uj*® is the average axial velocity, d. the equivalent particle
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and C are essentially treated as fitting parameters. More detailed
microscopic models based on the underlying convective, mass
transfer and adsorption phenomena are available and frequently
used, such as the coupling model of Giddings [13], which identifies
several length scales of interaction among the dispersion sources.
However, these are also based on assumptions about the geome-
try and the corresponding flow field and involve several additional
parameters, the values of which must be assumed or obtained
experimentally.

More rigorous approaches start from the complete set of trans-
port equations, incorporating varying degrees of detail. Analytical
solutions of the complete transport equations, such as those of
the general rate model, remain intractable and numerical solutions
introduce complexities of their own such as numerical dispersion
[14,15]. Therefore, simplifications are often made, for example by
utilizing lumped parameters such as a constant axial dispersion
coefficient that has to be determined by experiment [16,17], assum-
ing radial homogeneity, and simplifying the transport equations
by ignoring effects of certain physical phenomena based on their
expected contribution to the band profiles.

A complete interpretation of observed transport and adsorption
phenomena thus requires consideration of the fundamental under-
lying microscopic mechanisms [12,18], which are intimately linked
to the interaction of flow and dispersion with the explicit geom-
etry under consideration [13,19,20]. In complex geometries such
as those of monoliths, the motivation to start from the detailed
microstructure arises not only from the need to reproduce the cor-
rect functional dependence among macroscopic variables but also
because certain medium-specific phenomena appear to be affected
by the geometry itself. For example, results of virus pulse injections
in polymeric monoliths exhibit a decrease of exit peak area with
increasing flow rate, in what is apparently a reversible mechani-
cal entrapment of the solute in the stationary-phase structure [21].
The proposed explanation for this phenomenon hinges upon the
nature of the steric interaction of virus particles with the narrow
pores of the monolith, an effect that can be assessed and predicted
only by a pore-scale view of transport.

Advances in imaging methods and the capabilities of compu-
tational hardware and software have enabled detailed analyses
employing explicit pore-scale representations of complex geome-
tries. Simulation methods based on such direct structural
information are now well established, and have been used success-
fully to model flow and dispersion in diverse geometries such as
fractal constructs [22], sphere packs [23-36], internal networks of
porous particles [37] and more recently a silica monolith [20,38].
In a previous article [39], we presented results for the simulation
of flow in a three-dimensional reconstruction of a sample block
(Fig. 1) of a commercially available polymeric monolith disk, the
CIM™ disk from BIA Separations, using the lattice-Boltzmann (LB)
methodology. In this work, the findings of the flow simulation are
utilized to model dispersion in the same structure, for point and
finite-sized solute particles.

A Lagrangian particle tracking method, more generally referred
to as a random walk algorithm, is used for simulation of mass
transfer, whereby individual trajectories of a large number of
particles are utilized to simulate bulk dispersion. This class of
methods is based on the mathematical theory of Brownian motion
established by Einstein [40] and Langevin [41], and has been widely
applied to the more general problem of solving the convection-
diffusion equation [22-32,34,35,39-42]. The random walk method
avoids the problems of numerical dispersion and stability suffered
by finite-element and finite-difference methods at high Péclet
numbers [24], and provides an intuitive particle-based model of
transport that can be implemented on top of an existing flow
model [42]. The algorithm as used in this study does have its
limitations: particle-particle interactions are ignored, the flow

Fig. 1. A rendering of the reconstructed monolith structure, with the length (L) and
width (W) dimensions indicated. Black is solid.

field is uncoupled from particle motion (in that the particles cannot
alter the velocity field) and it may be difficult to implement bulk
concentration-dependent phenomena such as chemical reactions.
However, for simulations involving dilute pulse injections of
unretained solutes, as is the case for this study, these constraints
are not as relevant.

2. Materials and methods
2.1. Sample geometry and flow

The preparation, serial-section imaging and image processing
of the sample were described in the previous article [39]. The ‘raw’
block of Fig. 1 obtained thus had dimensions 962 x 962 x 756 voxels
(17.8 um x 17.8 pm x 14.1 pwm in x, y and z respectively). As in the
modeling of flow, the geometry used for the dispersion simulations
was obtained by ‘mirroring’ this raw-block in all three dimen-
sions in order to achieve edge-to-edge continuity of the structure,
resulting in a final sample geometry of 1922 x 1922 x 1510 voxels
(35.6 m x 35.6 wm x 28.2 pm).

The calculation of the velocity distribution within the recon-
structed monolith has also been described in detail previously [39].
For the base case of the LB simulations, flow within the mirrored
block was modeled for a preset pressure drop of 15.9 kPa along the
axial direction. The mobile phase was assumed to be water with
a kinematic viscosity (v) of 10-6 m2/s. Within the calculated flow
field, the local Reynolds number (Re; =(de-u;)/v, for pore velocity
u; with an equivalent particle diameter, d., of 1.9 wum) at even the
highest pore velocities remains below 0.025, hence creeping flow
can be assumed, allowing the detailed velocity distribution at other
imposed pressure drops to be obtained simply by linear scaling.

2.2. Random walk simulations

The discretized form of the generalized stochastic differential
equation for the motion of a single particle [43,44] is the basis for
the random walk simulation of dispersion. Solving this equation
for a large number of particles amounts to solving the probabilistic
Fokker-Planck equation of an ensemble [43,44], which in turn is
analogous to obtaining the solution for the convection-diffusion
equation [42,45,46]. The temporal variation of particle coordinates
can be expressed by:

Tnel =Tn+UX,Y,2) - At + /2Dy - A&, (3)
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where ris the particle coordinate vector, u the local velocity vector
as defined by the flow field, D, the molecular diffusion coefficient
of the simulated particles and A& arandom normal deviate. In this
formulation, the displacement of a particle at each step reflects the
sum of individual convective and diffusive contributions.

In the specific implementation of the random-walk algorithm
employed in this work, local velocity values were obtained by a
first-order trilinear interpolation of the scaled LB flow field values.
To avoid overshoot errors [46], the fixed time step At was chosen
sufficiently small so that at the largest local velocity of the highest
flow rate, a particle cannot traverse more than a fraction of one
voxel in a single step, in analogy with the Courant-Friedrichs-Lewy
criterion [47]. To simulate macroscopic column lengths, periodic
boundary conditions were employed in three dimensions, meaning
that particles that exit from either side of the block are reintroduced
from the corresponding opposite face. Collisions with solid walls
were handled using simple bounce-back [48].

Because of the considerable size (about 166 GB) of the geome-
try and velocity information that had to be loaded into memory for
fast and efficient processing of data, a parallel implementation was
used. The parallelization of the random walk algorithm of this study
closely follows that of Schure et al. [28]. The parallel code was writ-
ten in Fortran 90, compiled using the Portland Group Inc. Fortran
compiler and run on a Redhat Linux cluster of 16 quad-core Dell
R610 computers equipped with 3.0 GHz Intel Xeon processors and
3.0GB of RAM per processor. The computers were interconnected
with 10-Gigabit Ethernet switches and inter-processor communi-
cation was implemented by the message passing interface (MPI)
protocol [49] routines.

As a fixed column length (L) was simulated in all runs, the wall
time varied inversely with the simulated average velocity. For the
highest velocity setting (us® = 0.0195 m/s) the average wall time
was 4.5 h for a single run with 5000 particles and a time step of
10-8s.

2.3. Plate heights and axial dispersion coefficients

At the end of each run, the simulated elution curve was obtained
as an exit time distribution histogram compiled from individual
elution times of the particles. The average retention time and the
plate heights were calculated from the first and second moments
of the exit time distribution. The average retention time is given as:

N
1
=g fi 4
i=1

where N is the number of particles and ¢; are the particle exit times.
The (reduced) plate heights are calculated by:

N

_ L INT(

h—de.tﬁNz;(tl tx) (5)
i=

The related axial dispersion coefficient Dgx and its normalized value
D, are then obtained from h using:

_Dax_h~Pe 6)

Pa=p, =2

2.4. Emulation of probes of finite size

To represent the interaction of probes of finite size with the
monolith, the geometry was transformed to simulate the dimin-
ished pore volume accessible to the center of mass of a probe with
a finite size, as opposed to the full pore space that can be sampled
by a point probe. This was implemented by eroding the pore vol-
ume with a structuring element equivalent to the probe of finite

Fig. 2. A two-dimensional portion of a section of the sample geometry eroded by
a spherical probe with a diameter of 5 voxels, a cross-section of which is shown
to scale above the top left corner of the image. The black regions indicate the pre-
erosion solid geometry while the white outline represents the pore geometry that
has been transformed into solid after erosion. The remaining pore space after erosion
is shown as dark gray.

size [50-52]. An example application is presented in Fig. 2, which
shows a two-dimensional cross-section of a monolith sample that
has been eroded by a three-dimensional spherical probe with a
diameter of 5voxels. The white regions indicate the portions of
the pore space that have been eroded from the raw geometry,
i.e., transformed into solid, illustrating the slightly diminished vol-
ume accessible to the finite-sized probe. The velocity distribution
remains unchanged regardless of the size and shape of the probe,
consistent with the aforementioned assumption of the flow field
being uncoupled from mass transfer.

The erosion procedure can require considerable computing time
depending on the size of the probe, and a new geometry has to be
generated for every unique probe size and shape, but the benefit is
a simpler code structure and the (generally) increased speed of the
simulations due to the avoidance of a computationally expensive
collision detection algorithm invoked at each step.

3. Results and discussion

3.1. Dispersion of point particles at macroscopic column length
scales

Prior to the simulation of mass transfer in the monolith sam-
ple, the random walk code was validated using simpler systems for
which analytical solutions of both the velocity field and the disper-
sion coefficients were available [53,54]. The computed results for
asymptotic dispersion in Poiseuille flow in cylindrical tubes, square
ducts and infinite parallel plates showed excellent agreement with
the analytical solutions.

For simulations in the monolith sample, a generic point parti-
cle with a molecular diffusivity of 1.0 x 10719 m?/s was assumed,
as an approximation of small to medium molecular weight
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Table 1
The range of flow rates simulated for the point particle runs.
ug*® (m/s) Re? PeP
Minimum 9.75x 106 1.85x107° 0.185
Maximum 1.95x 1072 3.71x 1072 371

2 Re =(d. - uf"®)/v, with de=1.9 m and v=10"%m?/s. u;*® is the average axial
pore velocity.
b Eq. (2) with de=1.9 wm and Dy, =109 m?/s.

proteins such as lysozyme (Dp =1.1 x 10-19m?/s [55]) and oval-
bumin (D, =0.8 x 10719 m?/s [56]). The range of the flow rates and
the corresponding Re and Pe values are displayed in Table 1. This
range was chosen to include the flow rates used in the experimen-
tal work of Trilisky et al. [21,57] using the same monolith. However,
the highest flow rate (u§*® = 0.0195m/s) is outside the recom-
mended operating conditions of the CIM disk, and was included as
a hypothetical case to investigate the model behavior at extreme
conditions.

The trajectories of 5000 point particles in a column length
0.005m were simulated for each run. The default time step was
10-8 s, although a larger value of 10-7 s was used for flow rates
corresponding to Pe values smaller than 0.37. For all velocities, the
average retention time calculated by Eq. (4) deviated from the value
based on the column length and average velocity by less than 1.0%.

The reduced plate heights for column simulations using two dif-
ferent time steps of 1078 and 10~7 s were calculated using Eq. (5),
and are displayed in Fig. 3. Reduced HETP data for an additional
simulation set, designated as the ‘single-block’ data, are also plotted
and discussed in Section 3.2. For all simulation sets, curve fits of the
data (dashed and continuous curves) were obtained using a variant
of the Knox equation, where the linear term in Pe, identical to the
C-term in the van Deemter equation (Eq. (1)), was removed, i.e.:

B n
h= Pe +A-Pe (7)
In the original formulation of Knox [10], the exponent n was set at
0.33, but we treat it as an adjustable parameter here.

The data points for the two simulation sets employing the differ-
ent time steps show that the algorithm is largely insensitive to At
for the values tested. The most noticeable difference is at the high-
est flow rate, presumably because the highest values of the velocity
field for the larger At of 10~7 s are expected to result in Courant
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Fig. 3. The plate height curves for point-sized probe column simulations with two
different time steps, At=10"8s(a)and At=10"" s (0O); the single-block simulation
set (@); the modified Knox fits to the simulation data (the dashed and continuous
lines), and the experimental results (W) of Trilisky et al. for ovalbumin [55].

numbers slightly higher than one, likely giving rise to overshoot
errors.

The topmost data set in Fig. 3 displays experimentally obtained
results for h [58] for ovalbumin in the CIM monolith. These data
were recomputed from the original so that all plate heights and Pe
numbers were based on the value of equivalent diameter obtained
in the current study. Compared to the experimental data, it is
obvious that the particle simulations do not capture the physical
dispersion behavior. Part of the discrepancy can be ascribed to flow
non-idealities that are not accounted for in the model, such as the
wall effects that are discussed later, but the bigger cause for con-
cern is the appreciable difference in the functional trends between
the simulated and experimental data.

Characterizing the dependence of the plate height on Pe is a use-
ful first step in resolving the underlying reasons for this difference.
The modified Knox relation of Eq. (7) yields the fit values of A= 1.43,
B=1.36andn=0.667, and captures the trends of the simulation data
well over the entire range (Fig. 3, dashed line). While the low end
of the Pe range follows the molecular diffusion-dominated form as
expected, the magnitude of n is surprisingly large, suggesting that
axial dispersion scales with Pe!67 (per Eq. (6)) at high flow rates.
This approaches the theoretically predicted value of 2 for flow fields
where (lateral) mechanical dispersion is absent and velocity biases
among streamlines are eliminated by diffusive motion alone, such
as for flow in ordered arrays or for Taylor-like dispersion in ducts
and tubes [35,59,60]. As the experimental h values in Fig. 3 sug-
gest, however, monolithic media are expected to show behavior
more akin to random media, where lateral dispersion scales with
the flow rate and contributes to the elimination of velocity bias.
This in turn leads to a much weaker dependence of the axial dis-
persion coefficient, Dgx, on flow rate, estimated to vary as Pe'? to
Pe-In(Pe), with the latter often approximated by Pel2 [61-63].

Analysis of particle trajectories, and the local velocity field that
forms the deterministic part of the motion, point to the ultimate
cause of this unexpectedly strong coupling to Pe. As can be clearly
observed for the example depicted in Fig. 4a, particle trajectories
at high flow rates exhibit a distinct spiral pattern, with the lateral
directions reversed periodically. Inspection of lateral components
of the flow field indicates that this behavior is caused directly by the
velocity field. Fig. 4b displays the local x-velocities for two sections
of the mirrored sample block: section 250, above the mid-section
of the geometry (756 voxels or 14.1 wm) and section 1250, which
is below. A reversal of the lateral directions between these sections
is evident, the exact location of which is found to be at the half
and full mirrored-block lengths. Correspondingly, for simulation of
macroscopic lengths with periodic boundaries, the lateral spread of
the particles is artificially constrained by the block length, leading
to the high scaling of the axial dispersion with flow rate due to an
insufficient contribution of lateral dispersion to eliminate velocity
biases as mentioned above. It can be noted in each plate of Fig. 4b
that the local velocities change sign across the centerline of each
section as well, that is, an ‘anti-symmetry’ can be identified along
the width of the block.

While the exact reasons for this artificial symmetry are not clear,
it can be surmised that the inherent symmetry of the mirrored
geometry employed for the flow simulations is the basis for the
artifact. An additional complication is that this symmetrical flow
distribution is used in conjunction with periodic boundaries, which
have previously been reported to cause a spurious contribution to
dispersion [24,64] in simulations of random sphere packs. Although
a similar contribution could be anticipated for the geometry in this
study as well, considering the fact that a particle is exposed to the
symmetry immediately and throughout the block length, whereas
the effects of periodicity are only ‘felt’ at the block borders, it can
be suggested that the constraint of lateral motion via the former
effect is the dominant factor in the observed discrepancy.
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Fig. 4. (a) An example trajectory of a particle at Pe=3710, displaying the x and z
coordinates in voxels. (b) Local x-velocity values at section 250 (top, black dashes
indicate centerline) and section 1250 (bottom). Color map scale of velocities is iden-
tical for both plates. (For interpretation of the references to colorin this figure legend,
the reader is referred to the web version of this article.)

3.2. Dispersion of point particles in a single raw block

To avoid the reversal of lateral particle trajectories at every half-
block length of the mirrored structure, an alternative approach was
used where the particles were started at the entry section of the
raw block of Fig. 1 and allowed to stream until reaching its final
section, i.e., 756 voxels only, rather than using the full mirrored
block with periodic boundaries in order to simulate a macroscopic
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Fig. 5. Reduced plate heights as a function of fractional raw-block length
(L=14.1 pm).

column length. In the following discussion, these are referred to as
‘single-block simulations’ to differentiate them from the ‘column’
simulations of the previous section.

The plate height curve obtained for these simulations (Fig. 3,
continuous curve) indicates that single-block simulation h values
are considerably lower than those for the column simulations at
mid to high range of the flow rates, and follow a slope more similar
to that of the experimental data points. A fit of Eq. (7) this time gives
alower Pe exponent of 0.20, which is essentially the same as the the-
oretical prediction for random media without liquid holdup [61]. A
similarly weak dependence on Pe has been observed in simulations
of silica monoliths as well [38].

The discrepancy between the single-block simulation results
and the experimental data of Fig. 3 may be attributed at least in
part simply to the absence of wall effects as mentioned previously.
In packed beds, for example, it is known that the packing order
close to the wall and the radial stress exerted by the bed on the
wall promote a comparatively distorted flow field and increased
local plate heights [65-68]. Wall effects have also been observed in
silica monoliths [38,69]. The reduced local separation efficiency in
the monoliths is attributed to the structural difference between the
wall and the core regions caused by the shrinkage of the monolithic
rod during the manufacturing process [69], presumably leading to
the formation of the large pores observed at the interface of the
monolith material and the cladding [38].

Based on NMR measurements and simulations in packed beds,
Scheven et al. proposed that the overall effective dispersion can
be expressed as the sum of an intrinsic dispersivity characterizing
the homogeneous bulk pore volume and a term to account for flow
heterogeneities due to sample morphology, including wall effects
[70]. They suggested that for a set flow rate, both of these terms are
constant in the asymptotic limit and therefore the overall effective
dispersivity exceeds the intrinsic by a fixed amount, which seems
consistent with the results in Fig. 3 for the experimental values and
the simulation results for the single block. On the other hand, it
is important to assess whether the latter correspond to long-time,
stable, i.e. asymptotic, dispersion behavior. This was done by sim-
ulating lengths smaller than the raw block to obtain plate heights
as a function of the fractional block-length. The resultant h curves
are displayed in Fig. 5 for several flow rates.

Although the trends in this plot suggest that the dispersion val-
ues are converging, it is difficult to confirm that the final values
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Fig. 6. Plot of scaled u (total velocity) values in the central region of the sample block. Inset displays the topmost x-y cross-section of this region as the shaded area on
the first section of the sample block for perspective. The values are coded by a combined gradient of color and transparency, with the velocities displayed as opaque green
at their highest, a translucent mixture of green and blue at mid-range, and completely transparent, therefore invisible at solid voxels where the total vector is zero. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

at the raw-block length (i.e., corresponding to fractional length 1.0
in the plot) are indeed asymptotic, especially considering the sig-
nificant scatter at the higher flow rates. A factor that considerably
influences the transient evolution of the axial dispersion, warrant-
ing further investigation, is the presence of high-velocity pathways
within the simulated flow field of the sample block. This key fea-
ture of the velocity distribution is illustrated in Fig. 6, which plots
the local velocity values in the core of the sample block. The high
velocities, depicted as bright green, cluster to form channels like
the torus-shaped region in the figure. Theoretical analyses indicate
that such preferential pathways control the dispersion behavior, as
the characteristic length scales are defined by the average distance
required by solute particles to sample these paths [26,30].

A qualitative sense of whether these high-velocity pathways do
indeed influence particle trajectories can be obtained by the inspec-
tion of the initial and final lateral (x-y) positions of the particles,
with respect to how fast they exit from the geometry. If there are
indeed preferential pathways suggestive of channeling, the exit lat-
eral positions of the particles should be correlated to their initial
lateral positions. This analysis was carried out by sorting the exit
times of the particles and selecting the top and bottom 10% of the
total ensemble. The initial and final coordinates of these particles
are plotted in Fig. 7.

It is apparent that both the initial and the final positions of the
‘fast’ particles (top graph) are heavily clustered. The slowest par-
ticles do not display as obvious a pattern, however, and are more
extensively scattered throughout the entry and exit sections. This
means that for the faster trajectories, exit times are strongly cor-
related with the initial positions; in other words, the preferential
pathways or ‘channels’ within the 3D geometry have a significant
impact on the overall dispersion. High-velocity channels like those
in Fig. 6 could of course be present in a physical monolith, but are
unlikely on the scale of its entire geometry, which seems to be the
case for the 3D sample in this work.

3.3. Dispersion of finite-sized particles

A probe with a diameter of 92.5nm and a diffusivity of
10-""m?2/s was used for the finite-size particle simulations,
which approximately model the dispersion of adenovirus 5 (Ad5)
with an equivalent diameter of 120nm and a diffusivity of
0.37 x 10~ m?/s [71,72]. The reconstructed monolith geometry
was accordingly eroded by a 3D sphere of 5 voxels in diameter
to emulate the pore space accessible to the probe, resulting in a

decreased total apparent porosity of 0.507 compared to 0.570 for
the raw structure. A macroscopic column length of 3 mm was sim-
ulated, with other parameters and the range of velocities simulated
remaining the same as those used for the point particles summa-
rized in Table 1.

The first moments obtained from particle exit time distribu-
tions were about 10% lower than the expected values based on
the column length and uS*®. As mentioned, this discrepancy was
less than 1% for point particles, which means that the larger probes
travel faster. This is due to inaccessibility of the solid walls to the
centers of the larger particles due to their larger diameters [73],
resulting in trajectories that do not sample the lower velocities
near these wall regions, and consequently faster trajectories for the
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Fig. 7. Initial (O) and final (W) coordinates in pixel units of the fastest (top graph)
and slowest (bottom) 500 particles forming a simulated peak of 5000 particles for a
single-block run. Pe=371.
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Fig. 8. The histogram of elution times for finite-sized particles at the highest flow
rate (Pe=3710). The peak between 1.00 and 1.02 corresponds to the particles that
did not elute within the allocated timeout period.

particles. The expected proportional change in average velocity due
to the decrease of accessible pore volume can be calculated from
the lower apparent porosity. For the porosity values noted above,
the expected difference in retention times is calculated as 11%, close
to the value observed from the simulations.

The plate heights for the column simulations are obviously
subject to the symmetry issue of the flow field as well, and conse-
quently were found to exhibit a trend similar to that for the point
particle data. A fit of the modified Knox relation (Eq. (7)) yielded
a value of 0.72 for the exponent n, marginally higher than that
obtained for the point particles. However, a more specific and dis-
tinct reason for studying probe particles of finite size is the apparent
entrapment of particles within the geometry. At the beginning of
each run in the random-walk algorithm, a timeout period based
on the slowest percentile of the axial velocity distribution is des-
ignated; if a particle does not elute before this time point, it is
assumed to be ‘stuck’. Except for rare cases in which a particle was
initially positioned at a dead-end pore by the random placement
algorithm, all point particles were seen to elute from the simulated
column length significantly before the end of this specified timeout
period. For finite particle size simulations, on the other hand, a sig-
nificant portion did not elute within this time frame, especially at
the higher velocities. Fig. 8 depicts the simulated elution profile at
the highest Pe number, where the particles that do not exit before
the allocated time form the peak at 1.00s, the preset timeout value
for that flow rate.

A trace of the global position as a function of time for a
‘timed-out’ particle is given in Fig. 9, where it can be seen that
the coordinates gradually converge to a single point approxi-
mately halfway through the simulated column length and remain
unchanged for the rest of the simulation. All other trapped parti-
cles examined were seen to exhibit similar behavior, confirming
that the timeouts correspond to the termination of the trajectories.

The particular final location of Fig. 9 was investigated further by
isolating the geometry and the flow field of that region and running
partial simulations for the finite-sized probe, by releasing particles
numerous times at a point slightly upstream of the entrapment
point. Fig. 10 displays two examples of these runs, with the open
circles representing the individual trajectory steps for the particle,
and the red cones indicating the magnitude and direction of local
velocities. Fig. 10a is for the highest flow rate (Pe=3710), where it
can be seen that once the particle is released (at the position marked
by the filled circle) it follows the local flow field, reaching the trap
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Fig.9. Normalized global coordinates as a function of time for an entrapped particle.
The lateral coordinates are normalized by the block width W, whereas the axial
coordinate is normalized by the simulated column length, L.. The final normalized
coordinates at timeout are 1.98, 0.465 and 0.543 for x, y and z respectively.
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Fig. 10. Example trajectories (open circles) within the flow field (red cones) for a
single particle released in the immediate vicinity of the stagnation coordinates of
Fig. 9. The filled green circle outlined in black indicates the starting coordinates of
the particle. (a) High flow rate, Pe=3710. (b) Low flow rate (Pe=371); black arrow
indicates the final trajectory point visible in this perspective. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 11. Comparison of the entrapment behavior predicted by simulations (O) with
the experimental results (W) [21]. The simulation results are the number fraction
of particles that do not elute within the specified timeout period, while the experi-
mental data are the fraction of the solute mass trapped within the column.

region corresponding to the asymptotic coordinates of Fig. 9, and
remaining in the immediate vicinity for the rest of the simulation.
The trap region itself is a narrow constriction through which appre-
ciable flow occurs, yet it is small enough to prevent the passage of
the modeled probe.

The trajectory in Fig. 10b, on the other hand, was obtained for
a slower flow rate (Pe=371), and illustrates a much more inter-
esting outcome. When the particle is released in this case, even
thoughitis carried to the choke-point by the flow field, the stochas-
tic component of the overall motion formed by the diffusive steps
is sufficiently effective to allow the particle to probe the entire void
space available, as indicated by the diffusion cloud formed by the
multitude of points of the trajectory. This relative increase in mobil-
ity enables the particle to eventually leave the stagnation point, in
the particular case of Fig. 10b by backtracking to its point of entry
and switching to a more favorable path.

A previous experimental study [21] using Ad5 particles in the
CIM monoliths yielded results similar to the entrapment phe-
nomenon described above. Specifically, pulse injections of Ad5
onto a stack of 4 CIM monolith disks under non-retentive condi-
tions were observed consistently to result in elution peaks with
areas smaller than would be expected from the total injected mass.
The decrease in the peak area varied directly with the flow rate
employed, and furthermore the ‘missing’ mass of particles was
recovered from the column when the flow rate was decreased to a
low value. The authors explained this phenomenon by a flow-based,
convective entrapment mechanism, where large particles that are
forced by the flow field into constrictions narrower than the particle
diameter remain trapped unless a series of random diffusive moves
carry them to alternative open paths. At high velocities, where
convective contributions to transport are dominant, diffusion is
inadequate to overcome the velocity bias and particles remain at
their positions of entrapment. At lower velocities, however, when
convection and diffusion are of comparable magnitude, the latter
is sufficient to dislocate the particle onto a favorable trajectory.
The behavior indicated by the case studies of Fig. 10 closely resem-
bles the qualitative characterization of the entrapment mechanism,
providing support for this hypothesis within the framework of the
model employed.

A comparison between the simulated and experimental cases
of entrapment is made (Fig. 11) by plotting the number fraction
of entrapped particles in the simulations along with the fraction
of peak area that is ‘lost’ relative to the expected area from mass

balance observed in the pulse experiments. Although the simu-
lations anticipate the existence of the entrapment phenomenon
and predict correctly that it will increase with flow rate due to
the diminishing contribution of diffusion, it is evident that the
extent of entrapment is underpredicted by a large margin. Pos-
sible reasons for these lower estimates are the use of a smaller
particle diameter and a higher value of the diffusion coefficient
(10~ m?/s in the simulations vs. 0.37 x 10~ 11 m?/s for Ad5) and
the fact that the experimental results were obtained for a stack of 4
CIM disks, whereas the simulated length was for a single monolith
disk, leading to a decreased frequency of entrapment. The artificial
restriction of the lateral dispersion discussed in Section 3.2 is also
expected to contribute to this difference, by limiting the sampling
frequency of the choke-points by the particles. However, the fact
that this phenomenon arises in the simulations without any model
adjustments is encouraging, and indicates that key aspects of the
microscopic transport mechanisms are correctly captured by the
rigorous random-walk solution.

4. Conclusions

This work illustrates the feasibility of direct image-based
approaches for chromatographic modeling in that it provides
examples for the high-resolution capture of a microstructure,
its characterization by image processing methods and the appli-
cation of mesoscopic models for the simulation of transport. A
particular advantage is that the image-based approach allows an
explicit description of the geometry, enabling a much more rigor-
ous analysis of solute-stationary phase interaction. However, the
results also highlight one of the key challenges associated with this
approach, which is the question of how representative a sample is
of the macroscopic structure in order to obtain transient disper-
sion characteristics consistent with the physical system. Provided
that this criterion is met, the methodology developed is sufficiently
robust and flexible to accommodate these alternatives, and remains
promising for future applications.

Achieving predictive modeling of dispersion behavior requires
overcoming several additional challenges that this work reveals.
In addition to the absence of wall effects two separate issues are
believed to contribute to the discrepancies between the dispersion
simulations of this work and macroscopic measurements, namely
the artificial restriction of lateral motion by the periodic reversal
of the lateral velocity components and the channeling effects that
dominate dispersion within a single block length. Both of these
issues may potentially be addressed by the use of a larger sample,
which could allow the simulation of dispersion without resorting
to periodic boundaries, at the same time averaging out the anoma-
lies introduced by the local features that are further emphasized by
the mirroring procedure. The difficulty, however, is to determine a
priori whether such an alternative sample will be satisfactory itself.
Reliable metrics that provide guidance in assessing the overall util-
ity of a sample as a ‘typical’ element of the global geometry should
be used for this purpose and could be addressed by future research.
One option previously demonstrated for various random media
is to characterize the sample geometry using statistical correla-
tions, and to use them to estimate macroscopic transport properties
[74-77]. These estimates can then be compared with experimen-
tally obtained bulk values to decide whether the sample can be
considered to be representative of the whole.
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